
Effective Optimization Algorithms for Fragment-assembly based Protein Structure Prediction

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 EECS Building

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 06-012

Effective Optimization Algorithms for Fragment-assembly based

Protein Structure Prediction

Kevin Deronne and George Karypis

March 27, 2006



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
27 MAR 2006 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2006 to 00-00-2006  

4. TITLE AND SUBTITLE 
Effective Optimization Algorithms for Fragment-assembly based Protein
Structure Prediction 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Department of Computer Science and Engineering,University of
Minnesota,200 Union Street SE,Minneapolis,MN,55455-0159 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

11 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 





Effective Optimization Algorithms for Fragment-assembly

based Protein Structure Prediction∗

Kevin W. DeRonne and George Karypis

Department of Computer Science & Engineering,
Digital Technology Center, Army HPC Research Center

University of Minnesota, Minneapolis, MN 55455

{deronne, karypis}@cs.umn.edu

Abstract
Despite recent developments in protein structure prediction, an
accurate new fold prediction algorithm remains elusive. One
of the challenges facing current techniques is the size and com-
plexity of the space containing possible structures for a query
sequence. Traditionally, to explore this space fragment as-
sembly approaches to new fold prediction have used stochas-
tic optimization techniques. Here we examine deterministic al-
gorithms for optimizing scoring functions in protein structure
prediction.

Two previously unused techniques are applied to the prob-
lem, called the Greedy algorithm and the Hill-climbing algo-
rithm. The main difference between the two is that the latterim-
plements a technique to overcome local minima. Experiments
on a diverse set of 276 proteins show that the Hill-climbing
algorithms consistently outperform existing approaches based
on Simulated Annealing optimization (a traditional stochas-
tic technique) in optimizing the root mean squared deviation
(RMSD) between native and working structures.

1 Introduction
Reliably predicting protein structure from amino acid se-
quence remains a challenge in bioinformatics. Although
the number of known structures continues to grow, many
new sequences still lack a known homolog in the PDB
[2], which makes it harder to predict structures for these
sequences. The conditional existence of a known struc-
tural homolog to a query sequence commonly delineates
a set of subproblems within the greater arena of protein
structure prediction. For example, the biennial CASP
competition1 breaks down structure prediction as fol-

∗This work was supported in part by NSF EIA-9986042, ACI-0133464, IIS-
0431135, and NIH RLM008713A; the Digital Technology Centerat the Univer-
sity of Minnesota; and by the Army High Performance Computing Research Cen-
ter (AHPCRC) under the auspices of the Department of the Army, Army Research
Laboratory (ARL) under Cooperative Agreement number DAAD19-01-2-0014.
The content of which does not necessarily reflect the position or the policy of the
government, and no official endorsement should be inferred.Access to research
and computing facilities was provided by the Digital Technology Center and the
Minnesota Supercomputing Institute.

1http://predictioncenter.org/

lows. In homologous fold recognition the structure of
the query sequence is similar to a known structure for
some other sequence. However, these two sequences
have only a low (though detectable) similarity. In analo-
gous fold recognition there exists a known structure sim-
ilar to the correct structure of the query, but the sequence
of that structure has no detectable similarity to the query
sequence. Still more challenging is the problem of pre-
dicting the structure of a query sequence lacking a known
structural relative, which is called new fold (NF) predic-
tion.

Within the context of the NF problem knowledge-
based methods have attracted increasing attention over
the last decade. In CASP, prediction approaches that as-
semble fragments of known structures into a candidate
structure [18, 7, 10] have consistently outperformed al-
ternative methods, such as those based largely on ex-
plicit modeling of physical forces. Fragment assembly
for a query protein begins with the selection of struc-
tural fragments based on sequence information. These
fragments are then successively inserted into the query
protein’s structure, replacing the coordinates of the query
with those of the fragment. The quality of this new struc-
ture is assessed by a scoring function. If the scoring func-
tion is a reliable measure of how close the working struc-
ture is to the native fold of the protein, then optimizing
the function through fragment insertions will produce a
good structure prediction. Thus, building a structure in
this manner can break down into three main components:
a fragment selection technique, an optimizer for the scor-
ing function, and the scoring function itself.

To optimize the scoring function, all the leading
assembly-based approaches use an algorithm involving
a stochastic search (e.g. Simulated Annealing [18], ge-
netic algorithms [7], or conformational space annealing
[10]). One potential drawback of such techniques is that
they can require extensive parameter tuning before pro-
ducing good solutions.

1



In this paper we wish to examine the relative perfor-
mance of deterministic and stochastic techniques to op-
timize a scoring function. The new algorithms presented
below are inspired by techniques originally developed in
the context of graph partitioning [4], and do not depend
on a random element. The Greedy approach examines all
possible fragment insertions at a given point and chooses
the best one available. The Hill-climbing algorithm fol-
lows a similar strategy but allows for moves that reduce
the score locally, provided that they lead to a better global
score.

Several variables can affect the performance of opti-
mization algorithms in the context of fragment-basedab
initio structure prediction. For example, how many frag-
ments per position are available to the optimizer, how
long the fragments are, if they should be multiple sizes
at different stages [18] or all different sizes used together
[7], and other parameters specific to the optimizer can all
influence the quality of the resulting structures.

Taking the above into account, we varied fragment
length and number of fragments per position when com-
paring the performance of our optimization algorithms to
that of a tuned Simulated Annealing approach. Our ex-
periments test these algorithms on a diverse set of 276
protein domains derived from SCOP 1.69 [14]. The re-
sults of these experiments show that the Hill-climbing-
based approaches are very effective in producing high-
quality structures in a moderate amount of time, and that
they generally outperform Simulated Annealing. On the
average, Hill-climbing is able to produce structures that
are 6% to 20% better (as measured by the root mean
square deviation (RMSD) between the computed and
its actual structure), and the relative advantage of Hill-
climbing-based approaches improves with the length of
the proteins.

2 Materials and Methods

2.1 Data

The performance of the optimization algorithms studied
in this paper were evaluated using a set of proteins with
known structure that was derived from SCOP 1.69 [14]
as follows. Starting from the set of domains in SCOP,
we first removed all membrane and cell surface proteins,
and then used Astral’s tools [3] to construct a set of pro-
teins with less than 25% sequence identity. This set was
further reduced by keeping only the structures that were
determined byX-ray crystallography, filtering out any
proteins with a resolution greater than 2.5Å, and remov-
ing any proteins with aCα − Cα distance greater than
3.8Å times their sequential separation2.

2No bond lengths were modified to fit this constraint; proteinsnot
satisfying it were simply removed from consideration.

Table 1: Number of sequences at various
length intervals and SCOP class.

Sequence Length
SCOP Class < 100 100–200 > 200 total
alpha 23 40 6 69
beta 23 27 18 69
alpha/beta 4 26 39 69
alpha+beta 15 36 17 69

The above steps resulted in a set of 2817 proteins.
From this set, we selected a subset of 276 proteins
(roughly 10%) to be used in evaluating the performance
of the various optimization algorithms (i.e., a test set),
whereas the remaining 2541 sequences were used as the
database from whence to derive the structural fragments
(i.e., a training set).3 The test sequences, whose charac-
teristics are summarized in Table 1, were selected to be
diverse in length and secondary structure composition.

2.2 Neighbor Lists

As the search space for fragment assembly is much too
vast, fragment-basedab initio structure prediction ap-
proaches must reduce the number of possible structures
that they consider. They accomplish this primarily by
restricting the number of structural fragments that can
be used to replace eachk-mer of the query sequence.
In evaluating the various optimization algorithms devel-
oped in this work, we followed a methodology for iden-
tifying these structural fragments that is similar in spirit
to that used by the Rosetta [18] system.

Consider a query sequenceX of lengthl. For each po-
sition i, we identify a list (Li) of n structural fragments
by comparing the query sequence against the sequences
of the proteins in the training set. For fragments of length
k, these comparisons involve thek-mer ofX starting at
positioni (0 ≤ i ≤ l−k+1) and allk-mers in the training
set. Then structural fragments are selected so that their
corresponding sequences have the highest profile-based
score with the query sequence’sk-mer. Throughout the
rest of this paper, we will refer to the listLi as theneigh-
bor list of positioni.

In our study we used neighbor lists containing frag-
ments of a single length as well as neighbor lists con-
taining fragments of different lengths. In the latter case
we consider two different approaches to leveraging the
varied length fragments. The first, referred to asscan,
uses the fragment lengths in decreasing order. For exam-
ple, if the neighbor lists contain structural fragments of
length three, six, and nine, the algorithm starts by first
optimizing the structure using only fragments of length
nine, then fragments of length six, and finally fragments

3This dataset is available at http://www.cs.umn.edu/
˜deronne/supplement/optimize

2



of length three. Each one of these optimization phases
terminates when the algorithm has finished (i.e., reached
a local optimum or performed a predetermined number
of iterations), and the resulting structure becomes the in-
put to the subsequent optimization phase. The second
approach for combining different length fragments is re-
ferred to aspool, and it optimizes the structure once, se-
lecting fragments from any available length. Using any
single length fragment in isolation, or using either scan
or pool will be referred to as afragment selection scheme.

2.2.1 Sequence Profiles
The comparisons between the query and the training se-
quences take advantage of evolutionary information by
utilizing PSI-BLAST [1] generated sequence profiles.

The profile of a sequenceX of lengthl is represented
by two l × 20 matrices. The first is its position-specific
scoring matrix PSSMX that is computed directly by PSI-
BLAST. The rows of this matrix correspond to the var-
ious positions inX , while the columns correspond to
the 20 distinct amino acids. The second matrix is its
position-specificfrequencymatrix PSFMX that contains
the frequencies used by PSI-BLAST to derive PSSMX .
These frequencies (also referred to astarget frequencies
[13]) contain both the sequence-weighted observed fre-
quencies (also referred to aseffective frequencies[13])
and the BLOSUM62 [6] derived-pseudocounts [1]. For
each row of a PSFM, the frequencies are scaled so that
they add up to one. In the cases where PSI-BLAST could
not produce meaningful alignments for a given position
ofX , the corresponding rows of the two matrices are de-
rived from the scores and frequencies of BLOSUM62.

For our study, we used the version of the PSI-BLAST
algorithm available in NCBI’s blast release 2.2.10 to gen-
erate profiles for both the test and training sequences.
These profiles were derived from the multiple sequence
alignment constructed after five iterations using ane
value of10−2. The PSI-BLAST search was performed
against NCBI’s nr database that was downloaded in
November of 2004 and which contained 2,171,938 se-
quences.

2.2.2 Profile-to-Profile Scoring Method
The similarity score between a pair ofk-mers (one from
the query sequence and one from a sequence in the train-
ing set) was computed as the ungapped alignment score
of the twok-mers whose aligned positions were scored
using profile information.

Many different schemes have been developed for de-
termining the similarity between profiles that combine
information from the original sequence, position-specific
scoring matrix, or position-specific target and/or effec-
tive frequencies [13, 21, 11]. In our work we use a
scheme that is derived from PICASSO [5, 13] that was

recently used in developing effective remote homology
prediction and fold recognition algorithms [16]. Specif-
ically, the similarity score between theith position of
proteinX ’s profile, and thejth position of proteinY ’s
profile is given by

SX,Y (i, j) =
20
∑

l=1

PSFMX(i, l) PSSMY (j, l) +

20
∑

l=1

PSFMY (j, l) PSSMX(i, l),

(1)

where PSFMX(i, l) and PSSMX(i, l) are the values cor-
responding to thelth amino acid at theith position of
X ’s position-specific scoring and frequency matrices.
PSFMY (j, l) and PSSMY (j, l) are defined in a similar
fashion.

Equation 1 determines the similarity between two pro-
file positions by weighting the position-specific scores of
the first sequence according to the frequency at which
the corresponding amino acid occurs in the second se-
quence’s profile. The key difference between Equation 1
and the corresponding scheme used in [13] (therein re-
ferred to as PICASSO3), is that our measure uses the
target frequencies, whereas the scheme of [13] is based
on effective frequencies.

2.3 Protein Structure Representation

Internally, we consider only the positions of theCα

atoms, and we use a vector representation of the protein
in lieu ofφ andψ backbone angles. Our protein construc-
tion approach uses the actual coordinates of the atoms in
each fragment, rotated and translated into the reference
frame of the working structure. Fragments are taken di-
rectly from known structures, and are chosen from the
training dataset using the above profile-profile scoring
methods.

2.4 Scoring Function

As the focus of this work is to develop and evaluate new
optimization techniques, we use the RMSD between the
predicted and native structure of a protein as the scor-
ing function. Although such a function cannot serve as a
predictive measure, we believe that using this as a scor-
ing function allows for a clearer differentiation between
the optimization process and the scoring function. In ef-
fect, we assume an ideal scoring function in order to test
the optimization techniques.

2.5 Optimization Algorithms

In this study we compare the performance of three dif-
ferent optimization algorithms in the context of fragment
assembly-based approaches forab initio structure pre-
dictions. One of these algorithms, Simulated Annealing

3



[8], is currently a widely used method to solve such prob-
lems, whereas the other two algorithms, Greedy and Hill-
climbing, are newly developed for this work.

The key operation in all three of these algorithms is
the replacement of ak-mer starting at a particular posi-
tion i, with that of a neighbor structure. We will refer to
this operation as amove. A move is considered valid if,
after inserting the fragment, it does not create any steric
conflicts. A structure is considered to have a steric con-
flict if it contains a pair ofCα atoms within 2.5̊A of one
another. Also, for each valid move, itsgain is defined
as the improvement in the value of the scoring function
between the working structure and the native structure of
the protein.

2.5.1 Simulated Annealing (SA)
Simulated Annealing [8] is a generalization of the Monte
Carlo [12] method for discrete optimization problems.
This optimization approach is designed to mimic the pro-
cess by which a material such as metal or glass cools. At
high temperatures, the atoms of a metal can adopt con-
figurations not available to them at lower temperatures—
e.g., a metal can be a liquid rather than a solid. As the
system cools, the atoms arrange themselves into more
stable states, forming a stronger substance.

The Simulated Annealing (SA) algorithm proceeds in
a series of discrete steps. In each step it randomly selects
a valid move and performs it (i.e., inserts the selected
fragment into the structure). This move can either im-
prove or degrade the quality of the structure. If the move
improves the quality, then the move is accepted. If it de-
grades the quality, then the move will still be accepted
with probability

p = e

(

Sold−Snew
T

)

, (2)

whereT is the current temperature of the system,qold

is the score of the last state, andqnew is the score of
the state in question. From Equation 2 we see that the
likelihood of accepting a bad move is inversely related to
the temperature and how much worse the new structure
is from the current structure. That is, the optimizer will
accept a very bad move with a higher probability if the
temperature is high than if the temperature is low.

The algorithm begins with a high system tempera-
ture which it progressively decreases according to anan-
nealing schedule. As the optimization must use finite
steps, the cooling of the system cannot be continuous,
but the annealing schedule can be modified to increase
its smoothness. The annealing schedule depends on a
combination of the number of total allowed moves and
the number of steps in which to make those moves. Our
implementation of Simulated Annealing, following the
general framework employed in Rosetta [18], uses an an-

nealing schedule that linearly decreases the temperature
of the system to zero over a fixed number of cycles.

Simulated Annealing is a highly tunable optimization
framework. The starting temperature and the annealing
schedule can be varied to improve performance, and the
performance of the algorithm depends greatly on these
parameters. Section 3.2.1 describes how we arrive at the
values for these parameters of SA as implemented in this
study.

2.5.2 The Greedy Algorithm (G)
One of the characteristics of the Simulated Annealing al-
gorithm is that it considers moves for insertion at ran-
dom, irrespective of their gains. The Greedy algorithm
that we present here selects maximum gain moves.

Specifically, the algorithm consists of two phases. In
the first phase, calledinitial structure generation, the al-
gorithm starts from a structure corresponding to a fully
extended chain, and attempts to make a valid move at
each position of the protein. This is achieved by scor-
ing all neighbors in each neighbor list and inserting the
best neighbor (i.e. the neighbor with the highest gain)
from each list. If some positions have no valid moves
on the first pass, the algorithm attempts to make moves
at these positions after trying all positions once. This
ensures that the algorithm makes moves at nearly every
position down a chain, and also provides a good starting
point for the next phase.

In the second phase, calledprogressive refinement, the
algorithm repeatedly finds the maximum gain valid move
over all positions of the chain, and if this move leads to
a positive gain—i.e. it improves the value of the scoring
function—the algorithm makes the move. This progres-
sive refinement phase terminates upon failing to find any
move to make. The Greedy algorithm is guaranteed to
finish the progressive refinement phase in at least a local
optimum.

2.5.3 Hill-Climbing (HC)
The Hill-climbing algorithm was developed to allow the
Greedy algorithm to effectively climb out of locally op-
timal solutions. The key idea behind Hill-climbing is to
not stop after achieving a local optimum but to continue
performing valid moves in the hope of finding a better
local or a (hopefully) global optimum.

Specifically, the Hill-climbing algorithm works as fol-
lows. The algorithm begins by applying the Greedy al-
gorithm in order to reach a local optimum. At this point,
it begins a sequence of iterations consisting of ahill-
climbing phase, followed by a progressive refinement
phase (as in the Greedy approach). In the hill-climbing
phase, the algorithm performs a series of moves, each
time selecting the highest gain valid move irrespective
of whether or not it leads to a positive gain. If at any

4



point during this series of moves, the working structure
achieves a score that is better than that of the structure
at the beginning of the hill-climbing phase, this phase
terminates and the algorithm enters the progressive re-
finement phase. The above sequence of iterations termi-
nates when the hill-climbing phase is unable to produce
a better structure after successively performing all best
scoring valid moves.

Since the hill-climbing phase starts at a local opti-
mum, its initial set of moves will lead to a structure
whose quality (as measured by the scoring function) is
worse than that at the beginning of the hill-climbing
phase. However, subsequent moves can potentially lead
to improvements that outweigh the initial quality degra-
dation; thus allowing the algorithm to climb out of lo-
cally optimal solutions.

Move Locking As Hill-climbing allows negative
gain moves, the algorithm can potentially oscillate be-
tween a local optimum and a non-optimal solution. To
prevent this from happening, we implement a notion of
move locking. After each move, alock is placed on the
move to prevent the algorithm from making this move
again within the same phase. By doing so, we ensure
the algorithm does not repeatedly perform the same se-
quence of moves; thus guaranteeing its termination after
a finite number of moves. All locks are cleared at the end
of a hill-climbing phase, allowing the search maximum
freedom to proceed.

We investigate two different locking methods. The
first, referred to asfine-grain locking, locks the single
move made. The algorithm can subsequently select a dif-
ferent neighbor for insertion at this position. The second,
referred to ascoarse-grain locking, locks the position of
the query sequence itself; preventing any further inser-
tions at that position. In the case of pooling, coarse lock-
ing locks moves of all sizes.

Since fine-grain locking is less restrictive, we expect
it to lead to better quality solutions. However, the ad-
vantage of coarse-grain locking is that each successive
fragment insertion significantly reduces the set of frag-
ments that need to be considered for future insertions;
thus, leading to a faster optimization algorithm.

2.5.4 Efficient Checking of Steric Conflicts
One characteristic of the Greedy and Hill-climbing al-
gorithms is their need to evaluate the validity of every
available move after every insertion. This proves nec-
essary because each insertion can potentially introduce
new proximity conflicts. In an attempt to assuage the
time requirement for this process, we have developed an
efficient formulation for validity checking.

Recall that a valid move brings no twoCα atoms
within 2.5Å of each other. To quickly determine if

this proximity constraint holds, we impose a three-
dimensional grid over the structure being built with
boxes 2.5̊A on each side. As each move is made, its
atoms are added to the grid, and for each addition the
surrounding 26 boxes are checked for atoms violating the
proximity constraint. In this fashion we limit the number
of actual distances that must be computed.

We further decrease the required time by sequentially
checking neighbors at each position down the amino acid
chain. All atoms upstream of the insertion point must be
internally valid, as they have previously passed proxim-
ity checks. Thus, we need only examine those atoms at
or downstream from the insertion. This saves on compu-
tation time within one iteration of checking all possible
moves.

3 Experimental Evaluation

3.1 Performance of the Greedy and Hill-
climbing Algorithms

To compare the effectiveness of the Greedy and Hill-
climbing optimization techniques, we report results from
a series of experiments in which we vary a number of pa-
rameters. Table 2 shows results for the Greedy and Hill-
climbing optimization techniques usingk-mer sizes of 9,
6, and 3 individually, as well as using the scan and pool
techniques to combine them. Average times are also re-
ported for each of these five fragment selection schemes.

Examining Table 2, we see that the Hill-climbing al-
gorithm consistently outperforms the Greedy algorithm.
As Hill-climbing includes running Greedy to conver-
gence, the result is not surprising, and neither is the
increased run-time that Hill-climbing requires. Both
schemes seem to take advantage of the increased flexi-
bility of smaller fragments and greater numbers of frag-
ments per position. For example, on the average the 3-
mer results are 20.6%, 27.4%, and 31.3% better than the
corresponding 9-mer results for Greedy, Hill-climbing
(coarse) (hereafter HCc) and Hill-climbing (fine) (here-
after HCf ), respectively. Similarly, increasing the neigh-
bor lists from 25 to 100 yields a 15.1%, 19.4%, and
28.2% improvement for Greedy, HCc, and HCf , respec-
tively. These results also show that the search algorithms
embedded in Greedy, HCc, and HCf are progressively
more powerful as the size of the overall search space in-
creases.

With respect to locking, a less restrictive fine-grained
approach generally yields better results than a coarse-
grained scheme. For example, averaging over all experi-
ments, fine-grained locking yields a 13.7% improvement
over coarse-grained locking. However, this increased
performance comes at the cost of an increase in run-time
of 700% on the average.

Comparing the performance of the scan and pooling

5



Table 2: Average values over 276 proteins optimized using Hill-climbing and dif-
ferent locking schemes. Times are in seconds and scores are in Å. Lower is better
in both cases.

n = 25 n = 50 n = 75 n = 100
Score Time Score Time Score Time Score Time

Greedy

k = 9 12.17 14 11.14 16 10.74 18 10.44 20
k = 6 10.84 15 10.28 19 9.66 24 9.44 27
k = 3 9.51 25 8.99 34 8.58 45 8.25 58
Scan 9.29 38 8.29 42 7.89 46 7.52 51
Pool 9.06 54 8.36 69 7.81 215 7.61 106

Hill-
climbing
(coarse)
(HCc)

k = 9 10.18 22 9.32 30 8.73 55 8.38 72
k = 6 8.92 30 8.03 56 7.51 98 7.24 116
k = 3 7.31 59 6.86 129 6.29 231 6.11 313
Scan 6.89 93 6.17 159 5.53 243 5.23 336
Pool 6.89 175 6.32 379 5.79 543 5.54 959

Hill-
climbing
(fine) (HCf )

k = 9 9.59 51 8.45 162 7.88 381 7.45 649
k = 6 8.15 117 7.13 426 6.55 996 6.16 1731
k = 3 6.84 261 5.94 1093 5.40 2175 4.83 3169
Scan 6.43 330 5.41 1162 4.82 2028 4.33 2801
Pool 6.00 903 5.03 3586 4.46 5246 4.11 7151

Table 3: SCOP classes and
lengths for the tuning set.

SCOP identifier length SCOP class
d1jiwi 105 beta
d1kpf 111 alpha+beta
d2mcm 112 beta
d1bea 116 alpha
d1ca12 121 beta
d1jiga 146 alpha
d1nbca 155 beta
d1yaca 204 alpha/beta
d1a8d2 205 beta
d1aoza2 209 beta

methods to combine variable lengthk-mers we see that
only in the HCf algorithm does pool perform consis-
tently better than scan (an average of 6.6%). The other
schemes either have mixed results, or in the case of HCc,
pool performs somewhat worse. Results from the pool
and scan settings indicate that Greedy and HCc are not
as effective at exploring the search space as HCf .

3.2 Comparison with Simulated Annealing

3.2.1 Tuning the Performance of SA
Due to the sensitivity of Simulated Annealing to specific
values for various parameters, we performed a search on
a subset of the test proteins in an attempt to maximize
the ability of SA to optimize the test structures. Specifi-
cally, we attempted to find values for two governing fac-
tors: the initial temperatureT0 and the number of moves
nm. To this end, we selected ten medium length pro-
teins of diverse secondary structural classification (see
Table 3), and optimized them over various initial tem-
peratures. The initial temperature that yielded the best
average optimized RMSD wasT0 = 0.1 and we used
this value in all subsequent experiments.

In addition to an initial temperature, when using Sim-
ulated Annealing one must select an appropriate anneal-
ing schedule. Our annealing schedule decreases the tem-

perature linearly over 3500 cycles. This allows for a
smooth cooling of the system. Over the course of these
cycles, the algorithm attemptsα× (l× n) moves, where
α is an empirically determined scaling factor,l is the
number of amino acids in the query protein, andn is
the number of neighbors per position. Note that for the
scan and pool techniques (see Section 2.2), we allow SA
three times the number of attempted moves because the
total number of neighbors is that much larger. In order
to produce comparable run-times to the G, HCc and HCf

schemes,α values of 20, 60, and 250 are employed, re-
spectively.

In addition to the above experimental framework, we
also investigated the extent to which the performance of
SA improves if the total number of allowed moves were
split across a number of independent runs (in this case the
final structure will be the one that achieved the best score
over the different runs). Our results showed that this ap-
proach resulted in comparable or somewhat worse results
and we did not pursue it any further. Finally, following
recent work [17] we allowed for a temporary increase in
the temperature after 150 consecutive rejected moves.

3.2.2 Results
The Simulated Annealing results are summarized in Ta-
ble 4. As we see in this table, Simulated Annealing con-
sistently outperforms the Greedy scheme. For example,
the average performance of SA withα = 20 is 16.0%
better than that obtained by G. These performance com-
parisons are obtained by averaging the ratios between the
two schemes of the corresponding RMSDs over all frag-
ment selection schemes and values ofn. The superior
performance of Simulated Annealing over Greedy is to
be expected, as Greedy lacks any sort of hill-climbing
ability, whereas the stochastic nature of Simulated An-
nealing allows it a chance of overcoming locally op-
timal solutions. In contrast, both the fine and coarse-

6



Table 4: Average values over 276 proteins optimized using Simulated Annealing.
Times are in seconds and scores are in Å. Lower is better in both cases.

n = 25 n = 50 n = 75 n = 100
Score Time Score Time Score Time Score Time

α = 20

k = 9 11.46 19 10.22 26 9.47 33 9.11 40
k = 6 9.57 19 8.47 27 7.99 34 7.74 42
k = 3 7.60 20 6.84 28 6.58 36 6.44 44
Scan 7.59 59 6.76 82 6.31 105 6.32 129
Pool 7.38 59 6.93 83 7.03 105 7.18 129

α = 60

k = 9 10.73 33 9.41 55 8.85 77 8.63 99
k = 6 8.72 34 7.95 57 7.71 80 7.57 103
k = 3 6.85 36 6.57 60 6.64 85 6.66 109
Scan 6.91 105 6.56 177 6.42 252 6.47 316
Pool 7.26 105 7.20 176 7.23 246 7.28 317

α = 250

k = 9 9.80 103 8.88 196 8.70 289 8.62 381
k = 6 8.15 107 7.85 204 7.75 301 7.77 397
k = 3 6.87 114 6.89 219 6.94 325 6.92 433
Scan 6.87 327 6.65 621 6.63 933 6.61 1217
Pool 7.39 329 7.30 626 7.40 924 7.36 1218

The values ofα in the above table scale the number of moves Simulated Annealing is allowed to make. In our case,
the total number of moves isα × (l × n) wherel is the length of the protein being optimized andn is the number
of neighbors per position.

Table 5: Average values over the longest 138 proteins optimized using Hill-climbing
and different locking schemes. Times are in seconds and scores are in Å. Lower is
better in both cases.

n = 25 n = 50 n = 75 n = 100
Score Time Score Time Score Time Score Time

Greedy

k = 9 14.67 19 13.46 24 13.12 27 12.80 32
k = 6 13.48 23 13.11 30 12.22 38 11.98 45
k = 3 11.99 42 11.74 58 11.32 79 11.00 103
Scan 11.86 72 10.66 79 10.23 97 10.07 109
Pool 11.62 86 10.97 114 10.23 144 10.22 183

Hill-
climbing
(coarse)
(HCc)

k = 9 12.22 37 11.17 50 10.50 100 10.07 133
k = 6 11.09 51 9.97 101 9.25 183 9.06 218
k = 3 9.10 106 8.92 242 8.23 439 8.13 598
Scan 8.77 149 7.53 296 7.29 481 6.90 627
Pool 8.69 322 8.21 719 7.43 1010 7.25 1859

Hill-
climbing
(fine) (HCf )

k = 9 11.57 91 10.15 302 9.46 720 8.94 1229
k = 6 10.01 218 8.81 809 8.03 1904 7.52 3315
k = 3 8.60 490 7.70 2085 7.14 5167 6.54 8892
Scan 8.13 597 6.79 2024 6.19 4431 5.45 5976
Pool 7.44 1720 6.17 6936 5.43 10046 5.01 16807

locking versions of Hill-climbing outperform SA. More
concretely, on the average HCc performs 6.2% better
than SA withα = 60, and HCf performs 19.2% better
than SA withα = 250.

Analyzing the performance of Simulated Annealing
with respect to the value ofα, we see that while Simu-
lated Annealing shows an average improvement of 3.0%
whenα is increased from 20 to 60, the performance dete-
riorates by an average of 0.2% whenα is increased from
60 to 250. This indicates that further increasing the value
of α may not lead to performance comparable to that of
the Greedy and Hill-climbing schemes.

Also note that in some of the results shown in Table 4,
the performance occasionally decreases as theα value
increases. This ostensibly strange result comes from the
dependence of the cooling process on the number of al-
lowed moves, in which the value ofα plays a role. For
all entries in Table 4 the annealing schedule will cool
the system over a fixed number of steps, but the num-

ber of moves made will vary greatly. Thus, in order to
keep the cooling of the system linear we vary the num-
ber of moves allowed before the system reduces its tem-
perature. As a result, different values ofα can lead to
different randomly chosen optimization paths.

Comparing the performance of the various optimiza-
tion schemes with respect to the various fragment se-
lection schemes, we see two interesting trends. First,
Greedy, HCc, and HCf tend to produce better results
(i.e., lower RMSD values) using the scan fragment se-
lection scheme as compared to those obtained fork = 3;
whereas the performance of Simulated Annealing does
not significantly improve. For example, on the average
HCf with scan does 9.0% better than HCf with k = 3
over the different values ofn; but the corresponding av-
erage improvement of SA is only 1.3%. Second, the
performance of SA deteriorates (by 10.0% on the aver-
age) when the different lengthk-mers are used via the
pool method, whereas the performance of HCf improves

7



Table 6: Average values over the longerst 138 proteins optimized using Simulated
Annealing. Times are in seconds and scores are in Å. Lower is better in both cases.

n = 25 n = 50 n = 75 n = 100
Score Time Score Time Score Time Score Time

α = 20

k = 9 13.83 30 12.44 43 11.39 56 11.19 69
k = 6 11.73 31 10.55 44 9.93 57 9.66 71
k = 3 9.61 31 8.74 46 8.50 60 8.33 74
Scan 9.67 94 8.73 135 8.10 175 8.23 218
Pool 9.34 94 8.93 136 9.15 176 9.44 218

α = 60

k = 9 12.93 56 11.50 96 10.77 135 10.77 175
k = 6 10.60 58 9.98 99 9.76 139 9.66 181
k = 3 8.65 60 8.56 104 8.68 148 8.69 191
Scan 8.93 176 8.57 306 8.28 440 8.35 552
Pool 9.46 176 9.37 303 9.41 429 9.39 555

α = 250

k = 9 11.94 182 11.00 348 10.89 515 10.86 680
k = 6 10.20 189 10.01 362 9.90 536 9.93 709
k = 3 8.88 200 8.91 388 8.94 578 8.93 771
Scan 8.97 575 8.49 1102 8.49 1662 8.45 2168
Pool 9.51 578 9.40 1110 9.57 1642 9.46 2167

The values ofα in the above table scale the number of moves Simulated Annealing is allowed to make. In our case,
the total number of moves isα × (l × n) wherel is the length of the protein being optimized andn is the number
of neighbors per position.

(by 6.6% on average). We are currently investigating the
sources of these behaviors, but one possible explanation
of the latter observation is that Simulated Annealing has
a bias towards smaller fragments. This bias might re-
sult because an insertion of a bad 3-mer will degrade the
structure less than that of a bad 9-mer, and as a result, the
likelihood of accepting the former move will be higher
(Equation 2). This may reduce the optimizers ability to
effectively utilize the variable lengthk-mers.

Performance on Longest Sequences In order
to gain a better understanding of how the optimization
schemes perform, we focus on the longer half of the test
proteins. Average RMSDs and times for the Greedy and
Hill-climbing schemes are shown in Table 5, and average
RMSDs and times for Simulated Annealing are shown in
Table 6.

In general, the trends in these tables agree with the
trends in the average values over all the proteins. How-
ever, one key difference is that the relative improvement
of the Hill-climbing scheme over Simulated Annealing is
higher, while that of Greedy is lower. For example, com-
paring G and SA forα = 20, SA performs 17.0% better,
as opposed to 16.0% for the full average. Comparing
with SA for α = 60, HCc performs 7.0% better as op-
posed to 6.2% for the full average. Finally, comparing
with SA for α = 250, HCf is 21.1% better, as opposed
to 19.2% for the full average. These results suggest that,
in the context of a larger search space, a hill-climbing
ability is important, and that the hill-climbing abilitiesof
HCc and HCf are better than those of SA.

4 Discussion and Conclusions

This paper presents two new techniques for optimizing
scoring functions for protein structure prediction. One of
these approaches, HCc, using the scan technique, reaches

better solutions than Simulated Annealing in compara-
ble time. The performance of SA seems to saturate be-
yondα = 60, but HCf will make use of an increased
time allowance, finding the best solutions of all the ex-
amined algorithms. Furthermore, experiments with vari-
ations on the number of moves available to the optimizer
demonstrate that the Hill-climbing approach makes bet-
ter use of an expanded search space than Simulated An-
nealing. Additionally, Simulated Annealing requires the
hand-tuning of several parameters, including the total
number of moves, the initial temperature, and the an-
nealing schedule. One of the main advantages of using
schemes like Greedy and Hill-climbing is that they do
not rely on such parameters.

Recently, greedy techniques have been applied to
problems similar to the one this paper addresses. The
first problem is to determine a set of representative frag-
ments for use in decoy structure construction [15, 9]. The
second problem is to reconstruct a native protein fold
given such a set of representative fragments [19, 20]. The
greedy approaches used for both these problems traverse
the query sequence in order, inserting the best found
fragment for each position. As an extension, the al-
gorithms build multiple structures simultaneously in the
search for a better structure. While such approaches have
the ability to avoid local minima, they lack an explicit
notion of hill-climbing.

The techniques this paper describes could be modi-
fied to solve either of the above two problems. To build
a representative set of fragments, one could track the fre-
quency of fragment use within multiple Hill-climbing
optimizations of different proteins. This would yield a
large set of fragments, which could serve as input to
a clustering algorithm. The centroids of these clusters
could then be used in decoy construction. In order to con-
struct a native fold from these fragments one need only

8



restrict the move options of Hill-climbing to the repre-
sentative set. We are currently working on adapting our
algorithms to solve these problems.

References
[1] S. F. Altschul, L. T. Madden, A. A. Schffer, J. Zhang,

Z. Zhang, W. Miller, and D. J. Lipman. Gapped blast
and psi-blast: a new generation of protein database search
programs. Nucleic Acids Research, 25(17):3389–402,
1997.

[2] H.M. Berman, J.Westbrook, Z. Feng, G. Gilliland, T.N.
Bhat, H. Weissig, I.N. Shindyalov, and P.E. Bourne. The
protein data bank.Nucleic Acids Research, 2000.

[3] J. Chandonia, G. Hon, N. S. Walker, L. Lo Conte,
P. Koehl, M. Levitt, and S. E. Brenner. The astral com-
pendium in 2004.Nucleic Acids Research, 2004.

[4] C.M. Fiduccia and R.M. Mattheyses. A linear-time
heuristic for improving network partitions.Proceedings
of the 19th Design Automation Conference, 1982.

[5] A. Heger and L. Holm. Picasso: generating a covering set
of protein family profiles.Bioinformatics, 2001.

[6] S. Henikoff and J. G. Henikoff. Amino acid subsitution
matrices from protein blocks.PNAS, 89:10915–10919,
1992.

[7] K. Karplus, R. Karchin, J. Draper, J. Casper, Y. Mandel-
Gutfreund, M. Diekhans, and R. Hughey. Combining
local-structure, fold-recognition, and new fold methods
for protein structure prediction.PROTEINS: Structure,
Function and Genetics, 2003.

[8] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimiza-
tion by simulated annealing.Science, 220:671–680, 1983.

[9] R. Kolodny, P. Koehl, L. Guibas, and M. Levitt. Small
libraries of protein fragments model native protein struc-
tures accurately.Journal of Molecular Biology, 323:297–
307, 2002.

[10] J. Lee, S. Kim, K. Joo, I. Kim, and J. Lee. Prediction of
protein tertiary structure using profesy, a novel method
based on fragment assembly and conformational space
annealing.PROTEINS: Structure, function and bioinfor-
matics, 2004.

[11] M. Marti-Renom, M. Madhusudhan, and A. Sali. Align-
ment of protein sequences by their profiles.Protein Sci-
ence, 13:1071–1087, 2004.

[12] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller,
and E. Teller. Equation of state calculations by fast com-
puting machines.Journal of Chemical Physics, 21:1087–
1092, 1953.

[13] D. Mittelman, R. Sadreyev, and N. Grishin. Probabilis-
tic scoring measures for profile-profile comparison yield
more accurate short seed alignments.Bioinformatics,
19(12):1531–1539, 2003.

[14] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia.
Scop: a structural classification of proteins database for
the investigation of sequences and structures.Journal of
Molecular Biology, 247:536–540, 1995.

[15] B. H. Park and M. Levitt. The complexity and accuracy
of discrete state models of protein structure.Journal of
Molecular Biology, 249:493–507, 1995.

[16] H. Rangwala and G. Karypis. Profile based direct ker-
nels for remote homology detection and fold recognition.
Bioinformatics, 21:4239–4247, 2005.

[17] C. A. Rohl, C. E. M. Strauss, K. M. S. Misura, and
D. Baker. Protein structure prediction using rosetta.Meth-
ods in Enzymology, 2004.

[18] K. T. Simons, C. Kooperberg, E. Huang, and D. Baker.
Assembly of protein tertiary structures from fragments
with similar local sequences using simulated annealing
and bayesian scoring functions.Journal of Molecular Bi-
ology, 1997.

[19] P. Tuffery and P. Derreumaux. Dependency between
consecutive local conformations helps assemble protein
structures from secondary structures using go potential
and greedy algorithm. Protein Science, 61:732–740,
2005.

[20] P. Tuffery, F. Guyon, and P. Derreumaux. Improved
greedy algorithm for protein structure reconstruction.
Journal of Computational Chemistry, 26:506–513, 2005.

[21] G. Wang and R. L. Dunbrack JR. Scoring profile-to-
profile sequence alignments.Protein Science, 13:1612–
1626, 2004.

9


